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ABSTRACT
While the embedded security research community aims to protect
systems by reducing analog sensor side channels, our work argues
that sensor side channels can be beneficial to defenders. This work
introduces the general problem of synthesizing virtual sensors from
existing circuits to authenticate physical sensors’ measurands. We
investigate how to apply this approach and present a preliminary
analytical framework and definitions for sensors side channels.
To illustrate the general concept, we provide a proof-of-concept
case study to synthesize a virtual inertial measurement unit from a
camera motion side channel. Our work also provides an example of
applying this technique to protect facial recognition against silicon
mask spoofing attacks. Finally, we discuss downstream problems
of how to ensure that side channels benefit the defender, but not
the adversary, during authentication.
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1 INTRODUCTION
Sensor side channels enable an adversary to violate integrity of
sensor outputs by influencing or controlling the sensor with trans-
duction attacks [15, 39], or to eavesdrop on sensitive information
and compromise confidentiality by exploiting flaws in sensor and
system designs [3, 5, 22, 30]. For example, the eavesdropping exam-
ple PIN Skimmer [30] shows that adversaries can infer smartphone
touchscreen inputs by exploiting side channel motion informa-
tion captured by smartphone cameras. While the security research
community invested significant effort identifying and mitigating
analog sensor side channels, our work argues that it can be benefi-
cial to embrace, understand, and control analog sensor side
channels instead of simply eliminating them. This is moti-
vated by our observation that such side channel information may
also be used for authentication. For example, extensive research
has been conducted on using dedicated motion sensors to capture
smartphone touch dynamics for continuous implicit user authenti-
cation [34]. Relating it to PIN Skimmer, a natural question arises as
to whether cameras support such authentication when dedicated
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Figure 1: Sensor side channels are different from conven-
tional side channels as they measure the measurement pro-
cesses instead of computation processes. Sensor side channels
can measure the byproduct, measurer, and environment to
verify authenticity of intended sensor measurands.

motion sensors are not available. We thus propose and investigate
the problem of how to utilize sensor side channels for defensive
purposes such as multimodal authentication by synthesizing virtual
sensors from them.

Side channels are inherent to analog sensors’ physics. There exist
a considerable number of potential sensor side channels besides
those revealed by transduction and eavesdropping attacks. However,
most of these side channels are deliberately “closed” in the design
phase by employing mitigation mechanisms such as calibration and
noise reduction. It is foreseeable that sensor and system designers
will also try to mitigate newly discovered side channels. This work
argues a different perspective and approach to embrace such sensor
side channels. If these side channels can be used in a beneficial way,
we envision future designs allowing mitigation mechanisms to be
strategically disabled or downgraded when needed such as during
authentication sessions.

We provide a preliminary analytical framework for modeling
analog sensor side channels and explaining the origins and charac-
teristics of them. The framework categorizes sensor side channels
according to their separability from intended signals and whether
they have controllable mitigation mechanisms. Based on the frame-
work, we define the problem of virtual sensor synthesis for mul-
timodal measurand authentication and summarize three possible
ways of applying this approach (Figure 1). First, by verifying sig-
natures of signal byproducts and asking the question “What is the
probability that Alice generated both the measurands and byprod-
ucts?” Second, by verifying the person performing themeasurement
and asking “What is the probability that Alice generated the measur-
ands if Bob was the measurer?” Third, by verifying the environment
of the measurement process and asking “What is the probability
that Alice generated the measurands if the measurement was taken
in location B?”

A proof-of-concept case study further concretizes the concepts
and related considerations by studying a camera motion side chan-
nel that enables cameras to sense out-of-sight motion. This side
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channel is caused by mechanical connections between camera de-
vices and adjacent objects in motion such as a hand holding the
camera. We propose a methodology for synthesizing virtual inertial
measurement units (IMUs) from this side channel that can extract
both inter-frame low-frequency and intra-frame high-frequency
motion information. The case study discusses this side channel’s
potential application in helping facial recognition systems defend
against 3D silicon mask spoofing attacks by verifying postural hand
tremor motion of the person holding the camera device. Prelimi-
nary test with 4 people suggests the camera motion side channel
help reduce false positive rates by up to 87.5%. It also shows that
disabling video stabilization enables higher performance, empha-
sizing the benefits of strategically disabling side channel mitigation
mechanisms. Finally, we discuss the possible issues of temporar-
ily opening sensor side channels during authentication and the
directions future works may take to address the issues. Our main
contributions are summarized as follows:

• A new paradigm to embrace and harness analog sensor side
channels for defensive purposes via active control or influ-
ence of sensor side channels.

• An analytical framework to enable definition and characteri-
zation of sensor side channels. The framework introduces
the concept of virtual sensor synthesis for multimodal sensor
measurand authentication.

• A case study and methodology of synthesizing virtual IMUs
from camera motion side channels for enhancing perfor-
mance of facial recognition systems. Virtual IMUs decrease
false positive rates when facial recognition is subjected to
emulated 3D silicon mask spoofing attacks.

2 BACKGROUND & RELATEDWORK
Side channels are unintended information output channels. The
idea of synthesizing virtual sensors for authentication can be traced
back to the general concept of using side channel information to
identify people in forensic analysis. For example, forensic hand-
writing recognition allows one to determine the identity of a letter
writer even though the letter was never intended to convey identity
information. In the field of digital forensics [14], the authenticity
of digital evidence can be verified by cross-correlating file data and
metadata with other contextual information. For example, fraud-
ulent documents were reported to be detected by analyzing their
choices of font [6]. Our paper investigates how we can design
mechanisms to actively utilize side channel information in sensor
readings for defending computer systems. We introduce research
works related to this idea in this section.

2.1 Sensor Side Channel Based Attacks
Sensor side channels have been actively exploited in two lines of
research, namely transduction and eavesdropping attacks. This
section provides some background and examples of these attacks.
Different from these works that try to compromise information in-
tegrity and confidentiality of sensor systems, our work investigates
how designers may defend sensor systems by actively controlling
and utilizing sensor side channels.

Transduction Attacks. Transduction attacks injects analog
signals into sensors where victim sensor circuitry transduces an

attacker’s malicious physical signals to untrustworthy sensor mea-
surements. Such malicious physical signals can often be in different
physical modalities (e.g., acoustic vs. optical) or frequency ranges
(e.g., audible vs. ultrasound) than what the sensors are designed to
sense. For example, Light Commands [33] uses lasers to inject false
speech signals into microphones. Works such as Walnut [31, 36]
use acoustic injections to influence and control the output of MEMS
gyroscopes and accelerometers. Ghost Talk [20] uses radio waves to
inject audio signals into microphones. An SoK and a survey [15, 39]
provide a comprehensive review of theses attacks and correspond-
ing mitigation mechanisms.

EavesdroppingAttacks. Sensor side channels are also exploited
for eavesdropping out-of-band information. For example, PIN Skim-
mer [30] used a camera-based side channel to infer PIN inputs by ex-
ploiting correlations between smartphone camera orientations and
tapping locations. Several works such as Gyrophone [3, 5, 22] use
smartphone IMUs which contain accelerometers and gyroscopes
to eavesdrop speech by exploiting side channels enabled by signal
aliasing in analog-to-digital converters (ADCs).

2.2 Using Conventional Non-sensor Side
Channels For Defensive Purposes

Although we could not find related research that investigates the
concept of utilizing sensor side channels for defending a system, we
found that a few previous works explored using non-sensor side
channels for machine-to-machine authentication. [29] proposes to
use the key-dependent side channel information in wireless commu-
nication channels to enhance existing cryptographic protocols. [10]
presents an extension by analyzing practical and security issues of
the protocol in [29] and providing fixes. Compared to them, this
work focuses on the concept of sensor side channel and authenti-
cation of sensor’s measurands instead of computation-generated
information as the previous works did. Non-sensor side channels
are also utilized in other applications such as code-execution moni-
toring and intrusion detection [4, 9, 26].

3 PROBLEM FORMULATION
This section defines the problem of using sensor side channels
for measurand authentication. Our paper proposes the concept of
using sensor side channels for authentication as a new direction
of research for the community. We also fill a gap by suggesting a
mathematical definition of sensor side channels, beginning with
a framework for defining and categorizing sensor side channels.
We then introduce the problem of synthesizing virtual sensors and
using them for multimodal sensor measurand authentication.

3.1 Sensor Side Channel Analytical Framework
3.1.1 Sensor. A sensor, or transducer, can be modeled as a function
that maps physical measurands to digital measurements over time.
A measurand is a quantity that a sensor intends to measure [17].
Different types of sensors are designed to measure different modal-
ities of measurands such as sound, temperature, motion, etc. Users
who are informed of the apparent purpose and specifications of
sensors often see a sensor as the following function over a single
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variable of the measurand:

𝑚 = 𝑓 (𝑠
𝑖𝑛𝑡

) (1)

where𝑚 and 𝑠
𝑖𝑛𝑡

denote the digital measurements and analog mea-
surand respectively and 𝑓 (·) denotes the sensor.

3.1.2 Sensor Side Channels. Although Equation 1 provides average
sensor users a clean and easy abstraction, actual sensor implemen-
tations are much “dirtier’ and introduce numerous hidden variables
to the equation that result in unintended components in measure-
ment 𝑚. For instance, every conductor wire can be regarded as
an unintentional antenna, leading to side channels that convert
electromagnetic energy to measurements of non-electromagnetic
sensors [20, 37]. In this case, hidden variables related to electro-
magnetic energy in the environment should be added to Equation 1.
Another example of such variables is temperature. Semiconductors
made of silicon are inherently sensitive to heat due to its ability
to excite electrons. So technically, Equation 1 should also include
temperature as a variable. Electromagnetic energy and temperature
are just examples of hidden variables associated to the underlying
physical characteristics of devices. There are also hidden variables
caused by design flaws and uncontrollable variations in the manu-
facture processes. Thus, Equation 1 should be modified to enable a
side channel-aware modeling of sensors:

𝑚 = 𝑓 (𝑠
𝑖𝑛𝑡

, 𝑠
𝑠𝑖𝑑𝑒

), 𝑠
𝑠𝑖𝑑𝑒

= [𝑠𝑣1 , 𝑠𝑣2 , ...] (2)
where 𝑠

𝑠𝑖𝑑𝑒
represent the set of all these hidden variables that can

potentially lead to side channels attacks.
The comparison between Equation 1 and 2 shows that the gap

between users’ understanding and sensors’ actual implementation
gives birth to sensor side channels. On a high level, we believe
the gap can also be attributed to the insufficient specifications of
legitimate and illegitimate sensor behaviors in the existing sys-
tem’s security policies. Note that this differs from conventional
non-sensor side channels where side channels bypass the clearly
specified security policies [16]: there are often no dedicated security
policies for sensors yet in existing sytems. Building upon previous
side channel research [32, 42], we tentatively define sensor side
channels as the following:

• A sensor side channel is a communication channel that allows
someone to recover secret information using unintended sensor
measurement components in a way that violates the associated
system’s security expectations.

Sensor side channels are sometimes more conceptually difficult
to recognize than conventional non-sensor side channels such as
differential power analysis channels. The reason is that non-sensor
side channels are used to mainly measure computation processes
where there exists a clear boundary between computation and
measurement whereas sensor side channels are used to measure
the measurement processes themselves (Figure 1).

A possible way of identifying sensor side channels is to test the
hypothesis that the analog signal of a variable 𝑣𝑖 correlates with𝑚
with certain significance, i.e.,

|𝐶𝑜𝑟𝑟 (𝑚, 𝑠𝑣𝑖 ) | > 𝛼, 𝑠𝑣𝑖 ∈ 𝑠
𝑠𝑖𝑑𝑒

(3)

where 𝛼 is a threshold value. Note that this work does not discuss
the actual choice of threshold values and correlation functions since

they can be flexible depending on the actual application scenarios
and security requirements. In cases where it is challenging to project
𝑚 and 𝑠𝑣𝑖 to the same vector space in order to compute correlation
scores, other methods such as supervised classification can also be
used if 𝑠𝑣𝑖 can be converted into data labels.

3.1.3 Separability and Controllability. The unintended compo-
nents in the measurements are caused by the existence of 𝑠

𝑠𝑖𝑑𝑒

and can be either separable or inseparable from the intended com-
ponents. The separability between the intended and unintended
components is the key that decides whether a side channel can
be mitigated and controlled or not. Conceptually, separable com-
ponents can be defined as the following: there exists at least one
function 𝑓 (·) that can break𝑚 down into intended and unintended
components such that those components only correlate (with signif-
icance) with the measurand and other hidden variables respectively,
i.e.,

∃𝑓 (·) 𝑠 .𝑡 . 𝑓 (𝑚) = [𝑚
𝑖𝑛𝑡

,𝑚
𝑠𝑖𝑑𝑒

], 𝑚
𝑠𝑖𝑑𝑒

= [𝑚𝑣1 ,𝑚𝑣2 , ...],
|𝐶𝑜𝑟𝑟 (𝑚

𝑖𝑛𝑡
, 𝑠

𝑖𝑛𝑡
) | > 𝛼𝑖1, |𝐶𝑜𝑟𝑟 (𝑚𝑣𝑖 , 𝑠𝑣𝑖 ) | > 𝛼𝑖2,

|𝐶𝑜𝑟𝑟 (𝑚
𝑖𝑛𝑡

, 𝑠𝑣𝑖 ) | < 𝛽𝑖1, |𝐶𝑜𝑟𝑟 (𝑚𝑣𝑖 , 𝑠𝑖𝑛𝑡 ) | < 𝛽𝑖2 (4)

When a sensor side channel has separable components, we say
it is a separable side channel. Separability is decided by sensor im-
plementation 𝑓 (·). Side channels with inseparable components in
existing sensor implementations led to the various unsolvable at-
tacks against sensors (Section 2.1) because designers cannot extract
only the intended components.

Theoretically, those with separable components can be mitigated
by mechanisms referred to as compensation, calibration and noise
reduction. Suchmitigationmechanisms can be abstracted as another
function 𝑔(·) that suppresses the unintended components in the
output of 𝑓 (·), i.e., 𝑔(𝑓 (𝑚)) =𝑚

𝑖𝑛𝑡
. If the mitigation mechanisms

can be both turned on and off, the user of the sensor system then
have full control of the sensor side channel. We call such a sensor
side channel controllable:

• A controllable sensor side channel is one whose corresponding
unintended measurement component is separable from the
intended component and can be suppressed by a mitigation
mechanism that can be enabled and disabled.

3.1.4 Examples. We provide some existing examples of each cate-
gory of sensor side channels to shed light on the differences and
possible future evolution.

Inseparable. The Gyrophone eavesdropping attack [22] and its
follow-up works [3, 5] use an aliasing-enabled inseparable acoustic
side channel in smartphone IMUs to recover speech. These IMUs
have intended acceleration and angular velocity measurands mostly
under the frequency range of human speech. However, due to the
lack of effective analog low-pass filtering before the ADC, aliases of
the high-frequency speech signals exist in the output of ADC and
enable adversaries to recover speech information. Furthermore, the
aliases cannot be separated from the intended motion signals since
they are in the same frequency range. Intuitively, adding analog
filters to the sensors make this acoustic side channel separable. In
order to be controllable, the sensor API may further allow CPU to
enable and disable the filters.
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Separable But Uncontrollable. Those seemingly intact sen-
sors that have not been reported vulnerable to side channel-based
attacks also have inherent side channels, but just in a suppressed
manner thus these channels are not exposed to attackers. Take
sensors’ heat sensitivity mentioned in Section 3.1.2 as an exam-
ple. MEMS humidity sensors, gyroscopes, accelerometers, etc., are
widely equipped with temperature-compensated designs or online
thermal calibration procedures [7, 13, 40]. It can be anticipated that
if the compensation and calibration mechanisms can be temporarily
disabled, these sensors’ measurements will exhibit significant cor-
relation with the ambient temperature. In this way, the separable
side channel becomes controllable.

Controllable. There already exist sensors with controllable side
channels. A good example is handheld cameras getting equipped
with video stabilization mechanisms. Camera motion is often re-
garded as side effects that degrade the quality of the intended signal,
i.e., the scene in the field of view of the camera [41]. Video stabiliza-
tion mechanisms, including electronic image stabilization (EIS) and
optical image stabilization (OIS), etc., are implemented to mitigate
these side effects by optically or electronically reducing the un-
wanted image scene movements caused by camera motion. Many
operating systems such as Android allow app developers to choose
if these video stabilization mechanisms will be turned on or off
when the underlying camera hardware offers the API to control
it. However, it is worth noting that such existing controllable side
channels are most likely byproducts of OS designers’ conventions of
providing more fine-grained interfaces, especially for open-source
OS like Android which allows users to control EIS and OIS sepa-
rately. In contrast, iOS does not allow explicit and separate control
of EIS and OIS. Such a large degree of control is provided to support
more potential use cases and enhance usability. For example, users
may want to disable smartphone’s built-in optical image stabiliza-
tion when using an external gimbal because the two can interfere
with each other and produce extra image distortions [1]. To the
best of our knowledge, these existing controllable side channels
have not been explored to enhance the security of systems.

3.1.5 Summary. It is possible to convert existing inseparable or
uncontrollable side channels into controllable side channels by im-
proving sensor designs, as has been suggested by the increasing
popularity of video stabilization in cameras. Thus, it is important
to think from a perspective of technology development when con-
sidering benefits of sensor side channels. Furthermore, protecting
physical sensors from side channel attacks often already means
transforming inseparable side channels to be separable. With some
additional effort of making mitigation mechanisms controllable in-
stead of forever-on, sensor side channels can be used in a beneficial
and controlled manner. The following discussions assume sensors
have controllable side channels.

3.2 Measurands Authentication Using
Synthesized Virtual Sensors

3.2.1 Virtual Sensor Synthesis. A virtual sensor is a function that
maps𝑚 to𝑚𝑣𝑖 . Ideally, the construction of 𝑓 (·) in Equation 4 al-
ready presents such an overarching function that can measure both
the intended and side channel components. Such construction is
apparently challenging since it needs to consider all possible side

channels. Actual implementations can reduce the level of challenge
by focusing on maximizing |𝐶𝑜𝑟𝑟 (𝑚𝑣𝑖 , 𝑠𝑣𝑖 ) | and −|𝐶𝑜𝑟𝑟 (𝑚𝑣𝑖 , 𝑠𝑖𝑛𝑡 ) |
for only the set of targeted hidden variable {𝑣𝑖 }. We denote such a
function specifically crafted for {𝑣𝑖 } as 𝑓{𝑣𝑖 } and call them virtual
sensor functions.

3.2.2 Problem Definition. We define the problem as a binary hy-
pothesis test in a comparative manner by first referencing to the
unimodal authentication on the physical sensor’s measurand alone.
Without virtual sensors, objects in Equation 1 including𝑚, 𝑠

𝑖𝑛𝑡
, and

𝑓 are all that the designer of the authentication system can perceive.
Let there be a measurand with a true identity 𝐿 and a claimed iden-
tity �̃�. The 𝐻1 and 𝐻0 hypotheses are �̃� = 𝐿 and �̃� ≠ 𝐿 respectively.
Denote the unimodal authentication system as A𝑢 : 𝑚 → {1, 0},
where it declares 𝐻1 and 𝐻0 when outputting 1 and 0 respectively.
We can then define the total error of the unimodal system 𝐸𝑢 as

𝐸𝑢 = 𝑐1P[declare 𝐻1 |𝐻0] + 𝑐2P[declare 𝐻0 |𝐻1]
= 𝑐1E[A𝑢 (𝑚) |𝐻0] + 𝑐2E[1 − A𝑢 (𝑚) |𝐻1] (5)

where P[·|·] and E[·|·] denotes conditional probability and expec-
tation respectively, 𝑐1 and 𝑐2 denote the cost coefficients for false
positive and false negatives respectively.

Similarly, amultimodal authentication systemwith𝑛 synthesized
virtual sensors can be denoted as A𝑚 : [𝑚

𝑖𝑛𝑡
,𝑚𝑣1 , ...,𝑚𝑣𝑛 ] →

{1, 0}. The total error 𝐸𝑚 is defined as

𝐸𝑚 = 𝑐1E[A𝑚 ( [𝑚
𝑖𝑛𝑡

,𝑚𝑣1 , ...,𝑚𝑣𝑛 ]) |𝐻0]
+ 𝑐2E[1 − A𝑚 ( [𝑚

𝑖𝑛𝑡
,𝑚𝑣1 , ...,𝑚𝑣𝑛 ]) |𝐻1] (6)

As a result, the problem of synthesizing virtual sensors to au-
thenticate the measurand in a multimodal manner can be defined
as:

• Constructing virtual sensor functions 𝑓{𝑣𝑖 } and multimodal
authentication system A𝑚 such that better performance is
achieved for measurand authentication, i.e., 𝐸𝑚 − 𝐸𝑢 < 0.

3.2.3 Security Properties. Although multimodal authentication us-
ing synthesized virtual sensors look similar to that using multiple
physical sensors, it provides two different security properties.

First, it works with existing devices and media that only have
a single physical sensor’s data. Although high-end devices like
smartphones are equipped with multiple physical sensors, there
still exist lower-end devices that only serve a single purpose such
as ultrasonic proximity detectors and humidity monitors. Further-
more, sometimes it is needed to verify the identity of an object
such as a photograph that has already been generated with only a
single sensor. In this case, synthesized virtual sensors can extract
additional information in a retrospective way.

Second, it potentially provide more robustness against spoofing
attacks on individual sensors. The level of attack difficulty depends
on the complexity of 𝑓 , i.e., how difficult it is to decouple and then
modify different measurement components. Using multiple indi-
vidual sensors such as cameras, accelerometers, etc., is equivalent
to having a 𝑓 that does not need to decouple anything at all since
the inputs already separated. Conceptually, if we regard the mea-
surements corresponding to different virtual or physical sensors
as random variables, we can then regard their variances and co-
variances as the entropy provided for authentication [24]. Virtual
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sensors potentially provides more entropy because the coupling
between them adds to the covariances. Such entropy originates
from the intrinsic physics of sensors.

3.2.4 Application. The general problem definition can be applied
to different sources of side channel variables whose signatures
correlate with the claimed identity of the measurands. Depending
on the sources, we believe synthesized virtual sensors can be applied
in the following three ways to verify authenticity of measurands.

Byproduct Verification. A physical process generating in-
tended measurands is likely to generate other forms of energy
as byproducts. Let us explore the example of a loudspeaker that re-
plays a person Alice’s speech recordings while a nearbymicrophone
is listening to this replay. Say there is someone claiming the speech
audio collected by the microphone is coming from Alice herself
speaking live and an investigator tries to verify this claim. The in-
vestigator finds out that the loudspeaker also generates unintended,
secondary byproducts in the form of structure-borne vibrations,
electromagnetic emission, heat, etc., which may be sensed by vir-
tual sensors synthesized from the microphone’s side channels. So,
if these byproducts exist, the investigator knows it is not likely a
legitimate recording of Alice’s voice. In this case, the core authenti-
cation question can be summarized as “What is the probability that
Alice generated both the measurands and byproducts?”

Measurer Verification. A Measurer is the person who makes
measurements with a physical sensor. Measurers themselves gen-
erate unintended emissions taking the form of physical signals
containing certain signatures that correlate with the identity of
measurands. For example, say there exists an unmodified photo of a
person who is claimed to be Alice and an investigator tries to verify
this claim. The investigator managed to find out that the camera
operator who took this photo, i.e., the measurer was Bob because
Bob was speaking when he took the photo and his speech induced
identifiable image blurs through a camera motion side channel. If
the investigator also knows that Bob has never been in the vicinity
of Alice, then the investigator knows the person in the photo is
not Alice. Obviously, measurand authentication through measurer
verification may require higher-level contextual information com-
pared to byproduct verification. The core authentication question
is “What is the probability that Alice generated the measurands if
Bob was the measurer?”

Environment Verification. Similar to measurer verification,
verifying the environment surrounding measurands also allows one
to authenticate the measurands. Take the same example above. Say
the photo has a temperature side channel that shows the ambient
temperature was 104°F/40°C at the time of generating the photo,
pointing to a location B. If the investigator knows Alice has never
been in location B, then the investigator knows the person in the
photo is not Alice. The core authentication question is “What is the
probability that Alice generated the measurands if the measurement
was taken in location B?”

4 CASE STUDY
The case study demonstrates how to use camera motion side chan-
nels (Section 3.1.4) to synthesize virtual IMUs that can collect pos-
tural hand tremor information for measurand authentication in

facial recognition applications. It can be regarded an example of
both byproduct and measurer verification.

4.1 Primer
4.1.1 Postural Tremor Information. Tremor is the involuntary
rhythmic movement of a human body part caused by reciprocal
innervations of muscles. Such involuntary movements are present
in all people, with those found in healthy people and disease condi-
tions (e.g., Parkinson disease) classified as physiological and patho-
logical tremor respectively [35]. Clinical research finds that tremors
measured by accelerometers can effectively predict the category
of tremors. Some works further show that hand tremors measured
by accelerometers and gyroscopes are unique to an individual and
stable over time, suggesting the feasibility of using tremors as a
biometric for personal identification [12, 23].

4.1.2 Threat Model. We study a threat model of spoofing attack
against smartphone facial recognition systems where imposters are
assumed to launch a silicone face mask spoofing attack [27]. To
better show the effectiveness of the synthesized IMUs, we further
assume the silicone mask perfectly mimics the face of the victims.
During the attack, the imposter wears the silicone mask and holds
the victim’s smartphone for authentication. Our objective is to
extract camera motion from videos that represents the postural
hand tremor of users to defend against such perfect silicone mask
attacks.

It is worth noting this particular case study’s threat model re-
quires users to hold their phones in their hands during facial recog-
nition as the contact between their phones and hands provides a
propagation path for the vibration information of hand tremor. We
believe this is also the most frequent situation seen in smartphone-
based facial recognition applications. Nevertheless, there do exist
some circumstances where users may want to place their phone
on a table during authentication. Our tremor recognition with syn-
thesized virtual IMUs will not work in this case due to the lack
of camera motion. Similarly, a spoofing attacker cannot authen-
ticate successfully in this case without providing the camera the
correct motion. To enable users to authenticate without holding
their phones, we believe future works may look into other sensor
side channels that acquire a different type of user biometric infor-
mation such as body-radiated electromagnetic/heat energy without
requiring direct contact with the phone.

4.2 Synthesis Methodology
Different methodologies can be used to synthesize virtual IMUs
from camera motion side channels. For example, a completely
model-based methodology requires understanding 𝑓 (·) and 𝑓 (·).
Although the most accurate, it requires thorough understandings of
every targeted camera system and is challenging. Another possible
methodology is to completely rely on neural network to process
the raw videos and let the network figure out 𝑓{𝑣𝑖 } , which is sim-
ilar to previous work of inferring sounds from object motions in
videos [25]. This methodology requires intensive computation re-
sources and data collection. This work focuses on themiddle ground
by investigating a model-informed methodology that constructs
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Figure 2: Types of 2D image transformations corresponding
to the type of camera motion and motion readings measured
by physical IMUs.

𝑓{𝑣𝑖 } based upon the concepts of image registration. Image regis-
tration is the process of overlaying two or more images of the same
scene that are taken at different times, from different viewpoints,
and/or by different sensors [43]. The methodology aims to extract
both inter-frame motions and intra-frame motions.

4.2.1 Understand Motion Modulation. To construct 𝑓{𝑣𝑖 } , the first
step is to understand how motion signals are modulated onto im-
age streams. We analyze the motion modulation process from two
different perspectives.

Frame Transformation. The frame transformation perspective
considers changes of the frames subjected to camera motions as 2D
image transformations. Figure 2 shows the possible image transfor-
mations corresponding to motion on each one of the six real-world
axes and the measurements of physical IMUs. As a result, motions
that can be measured by IMUs can also be mapped to inter-frame
variations of the camera videos.

Rolling Shutter. Besides inter-frame variations, the rolling shut-
ter property of most cameras on portable devices can generate intra-
frame variations that embed high-frequencymotion. Rolling shutter
is the shutter mechanism of commercial CMOS cameras, which
exposes and samples the rows of an image sensor sequentially in-
stead of simultaneously as in a global shutter [21]. If viewing the
possible 2D image transformations as bases, rolling shutter com-
bine multiple transformations into a single frame. It increases the
effective sample rate of the motion signals provided by the camera
side channel.

Based on the knowledge of how camera motion is modulated
onto images, two corresponding categories of virtual IMU synthesis
methods are introduced next to measure low-frequency and high-
frequency information respectively.

4.2.2 Low-frequency Information Measurement. The frame trans-
formation perspective enables measurements of low-frequency
components. It perceives the difference between two frames as
the result of a single motion vector composed of single-axis mo-
tions (Figure 2) within the period of one frame. The camera imaging
process thus becomes the sampling process of the measurable mo-
tion signals with a sample rate that is the same as the video frame
rate, e.g., 30 Hz in case of 30 fps videos. Theoretically, all image reg-
istration methods are applicable to extract inter-frame variations.
We discuss one possible construction.

Image Transformation Estimation (ITE). A straightforward
way of extracting the frame differences is registering the frames
with respect to a reference frame by estimating the 2D image trans-
formations needed to warp the reference frame to the other frames
as has been explored in [30]. Each 2D transformation estimation
generates a 3-by-3 transformationmatrix. By concatenating each en-
try of different transformation matrices chronologically, it produces
9 vectors that represent the output of 𝑓{𝑣𝑖 } . Diverse algorithmic
implementations of this method are possible. This works uses an
image registration implementation based on phase correlation [28].

4.2.3 High-frequency Information Measurement. The rolling shut-
ter perspective allows for the extraction of intra-frame high-
frequency variations. It perceives the difference between two frames
as the result of multiple sequential motion vectors. The number of
motion vectors is the same as the number of rows of the camera
imaging sensor as each row is exposed and sampled sequentially.
The effective sample rate is thus the row-scanning rate of the rolling
shutter, which is higher than 30 kHz for most commercial cameras.
Nevertheless, not all signals within its Nyquist frequency can be
recovered, as the non-zero exposure time causes motion blurs and
attenuate the higher-frequency signals [11]. Similarly, a possible
construction is introduced below.

Rolling Shutter Estimation (RSE). Methods of rolling shut-
ter estimation still compares different frames, but performs such
comparison on the even smaller granularity level of rows or indi-
vidual pixels. Then, the methods concatenate the values generated
by the comparison first across different rows of a single frame,
and then across different frames to form the motion signal vec-
tors. With the proposed methodology, this work converts rolling
shutter estimation into a pixel-level image registration problem.
Algorithms capable of pixel-level registration often generate dis-
placement fields, i.e., matrices of the same size as the registered
images, on the X and Y directions. The produced matrices are appar-
ently high-dimension and difficult to process. We can then group
the matrices column-wise and average the columns in each group
to produce easily understandable signals. This work uses a diffeo-
morphic image registration method [38] to implement RSE.

4.2.4 Demonstration. Figure 3 shows the motion signals measured
by a physical IMU (408 Hz sample rate) and virtual sensors using
ITE and RSE methods. A Google Pixel 2 smartphone held by a
person recorded the physical IMU readings and camera videos si-
multaneously, where the postural hand tremor of the person caused
the camera motion. The ITE and RSE methods have sample rates
of 30 Hz and 34 kHz respectively. The figure only displays a single
vector of the physical and virtual sensor measurements respectively
that represents the horizontal motion to simplify the visualization.

Figure 3 (a) and (b) shows the measured signals with the video
stabilization functionality being off and on respectively. When
video stabilization is off, the virtual sensor outputs of both the
ITE and RSE method show strong correlation with the physical
IMU measurements. It is also clear that a 30 Hz sample rate is not
sufficient to capture all the motion, as the ITE method’s signal
shows larger distortions than that of the RSE method. When video
stabilization is turned on, the camera motion signals deviate more
from the IMU readings as expected. Although the signal of RSE
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Figure 3: Measurements of physical IMU accelerometer (408 Hz) and virtual IMU synthesized with the ITE and RSE methods
from videos (30 fps frame rate, 1080p resolution) in 5 seconds. Amplitudes are normalized to compared different measurement
approaches. (a) Videos stabilization is off. (b) Videos stabilization is turned on. Strategically disabling sensor side channel
mitigation mechanisms boosts up virtual sensors’ capability for measurand authentication.

method still shows observable correlation with the IMU signal, ITE
produces seemingly uncorrelated signals.

4.3 Experiment
We conduct preliminary tests with 4 people and a Google Pixel 2
smartphone. The 4 participants are all healthy males with similar
ages, heights, and weights. As a proof-of-concept instead of an
actual system product, we regard facial recognition and tremor
recognition as two decoupled problems and test them separately.
The tremor recognition mechanism can be regarded as an addi-
tional layer of protection besides the existing facial recognition
system. We investigate the impact of disabling and enabling video
stabilization in both of the two tests.

The objective of testing tremor recognition is to verify the ef-
fectiveness of the synthesized IMUs. To that end, we also recorded
the physical IMU readings for comparison. The objective of testing
facial recognition is two-fold. First, it is important to inspect if the
postural hand tremor of different people can already make a differ-
ence in the original facial recognition systems without synthesis of
virtual sensors. This verifies the necessity of constructing dedicated
virtual IMUs. Second, since turning off video stabilization may lead
to better virtual sensor performance, it is also necessary to inspect
if it would degrade the performance of facial recognition given that
the videos are more shaky due to unmitigated camera motion.

4.3.1 Data Collection. The 4 participants act as the legitimate user
in turn and the remaining 3 participants act as the imposters. During
the legitimate user sessions, each legitimate user holds the phone
and records his own face for 30 times. We refer to these videos as
legitimate videos. During the spoofing attack sessions, each of the
3 imposters holds the phone but records the face of the legitimate
user standing beside the imposter for 6 times to mimic a perfect
silicone mask as assumed in Section 4.1. We refer to these videos as
imposter videos. Each video recording is about 6s in length and the

physical IMU readings are recorded simultaneously. The procedure
is carried out first with video stabilization disabled. At the end, each
participant recorded 48 videos when he held the phone with 30 of
them being legitimate videos and the other 18 being imposter videos.
We then repeat the procedure with video stabilization enabled. The
total 384 videos (192 videos each set) are used for testing facial
recognition and tremor recognition.

4.3.2 Test Procedure & Result. We generalize the authentication
problem as an identification problem and use classification models
to measure the effectiveness of the two authentication schemes
against the spoofing attack.

Facial recognition Procedure.We tested MobileFaceNets [8]
as the classification model which is a widely used facial recognition
model designed for mobile platforms. 80% of each person’s legit-
imate videos are used to enroll their faces. The remaining 20% of
legitimate videos together with all imposter videos that contain
faces of the legitimate users are used as the authentication test data.

Facial recognition Result. Both the legitimate users and im-
posters’ videos authenticated with 100% success rate no matter
the video stabilization was enabled or disabled. As expected, the
results suggest that existing face authentication systems are mostly
likely not designed to utilize camera motion side channel informa-
tion. Mapping it to Equation 5, it suggests E[A𝑢 (𝑚) |𝐻0] → 1 and
E[1 − A𝑢 (𝑚) |𝐻1] → 0 for the system under this specific spoofing
attack. The results also show that disabling video stabilization to
allow for more capable virtual IMUs did not affect the performance
of the original facial recognition system.

Tremor Recognition Procedure. For each video, we generate
virtual IMU measurements using both the ITE and RSE methods.
We extract common time-domain and frequency-domain features
as the ones used in [5, 23]. As a simple proof-of-concept, we did
not use sophisticated machine learning models but directly utilized
Matlab’s implementation of support vector machine (SVM) with a
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quadratic kernel and the default hyper-parameters [2]. 5-fold cross
validation was performed in the training phase along with a one-vs-
one multi-class classification method. Similar to facial recognition,
for each legitimate user we use 80% of the legitimate videos (24
videos) in the training phase and the remaining 20% legitimate
videos (6 videos) together with all imposter videos (18 videos, 6
from each of the three imposters) as authentication test data. We
then calculate the true positive and true negative rates on the test
set. To provide comparisons, we repeat the same procedure also for
the physical IMU data.

Tremor Recognition Result. Table 1 shows the results of
tremor recognition. Virtual IMU using RSE had performance ap-
proaching that of the physical IMU. It suggests that under this
specific spoofing attack, E[A𝑚 ( [𝑚

𝑖𝑛𝑡
,𝑚𝑣1 ]) |𝐻0] → 0.125 and

E[1 − A𝑚 ( [𝑚
𝑖𝑛𝑡

,𝑚𝑣1 ]) |𝐻1] → 0.083 if using an AND logic to
combine facial and tremor recognition decisions. This results in
𝐸𝑚 − 𝐸𝑢 → −0.875𝑐1 + 0.083𝑐2, which is highly likely to be smaller
than 0. It is also clear that disabling video stabilization improves
the performance of virtual IMUs.

4.3.3 Summary & Implication. Our preliminary tests indicate a
high probability that integrating user postural hand tremor infor-
mation from camera motion side channels will help existing facial
recognition systems defend against visual spoofing attacks. Test
results show MobileFaceNets could recognize legitimate users with
100% accuracy but could not detect (with 0% accuracy) a powerful
silicone mask spoofing attack that almost perfectly replicates visual
features of users. This behavior is not a design defect of existing
facial recognition systems, but an anticipated outcome of only using
visual information during an authentication process. On the other
hand, virtual IMUs synthesized from camera motion channel were
able to detect such a visual spoofing attack with over 87.5% accu-
racy at a cost of reducing true positive rate to 91.7%. The simplest
approach of integrating virtual sensor into existing facial recogni-
tion systems is to have a standalone tremor recognition module
that processes camera motion information in the videos, and have
the system declare a legitimate user only when both this tremor
recognition module and the original facial recognition module de-
clare it simultaneously. In this way, the overall system’s security
performance increases in the face of facial spoofing attacks even
with a lower true positive rate. This result also suggests when a
physical sensor system has poor performance on a security task, it
is easy to produce an obvious marginal benefit on the system’s per-
formance by integrating sensor side channel information. Of course,
a more sophisticated decision system can tune its weights on the
facial and tremor recognition modules to strike a better balance
between usability and security.

Beyond camera motion side channels, our tests also provide one
viable data point for the general concept of utilizing sensor side
channels and reveal some common problems it faces. For example,
we expect the same problem of usability-security trade-off in using
virtual sensors synthesized from sensor side channels alongside the
original physical sensors. Essentially, physical sensors and synthe-
sized virtual sensors provide two streams of information, each one
of which is more reliable in one task but also unreliable in another
task. The design trade-off appears when the overall system needs
to complete both tasks to achieve its functionality.

4.3.4 Limitation & Future Work. With the goal of showing a proof-
of-concept example, our experiment provides empirical statistical
evidence for the benefit of utilizing camera motion side channels
only based on a very limited data distribution. The limitations of
tested data lie in the following 4 main dimensions.

First, the 4 young male participants may not provide a high
enough degree of demographic diversity, especially for evaluating
postural hand tremors which are highly dependent on age, gen-
der, and health conditions [19]. While we based our choice of the
4 participants on the hypothesis that more similar participants
produce less distinct tremor patterns and thus help us estimate a
lower bound of tremor recognition performance, we believe study-
ing more diverse groups of people will generate new insights into
recognition performance variability and possible strategies of recog-
nition algorithm design.

Second, we collected 30 samples of legitimate-user videos and
18 spoofing attack videos for each legitimate user’s authentication
session within a single day. We find this initial set of samples pro-
vided evidence to suggest the potential of utilizing hand tremor
information from camera side channels to enhance existing facial
recognition system’s security. It is possible that tremor patterns can
change with time. Although previous research shows hand tremor
remains stable after 78 days [12], a longer duration needs to be
investigated in future complete. The recognition system may need
to periodically update its database if tremor pattern is found to vary
over time.

Third, we emulated perfect silicone masks by using the real faces
of legitimate users. This only provides an estimate of the upper
bound of the overall recognition system’s performance improve-
ment when tremor recognition is used. Specifically, the benefit of
including tremor recognition may get lower when a worse-quality
silicone mask is used because the damage the attack can do to
the original unimodal authentication system is lower while tremor
recognition still causes a decrease in the true positive rate. As a
result, we suggest future works test different qualities of silicone
masks on popular facial recognition systems to better assess the
benefit of including virtual IMUs for tremor recognition.

Fourth, the decoupling of facial recognition and tremor recogni-
tion problems in this proof-of-concept case study prevents us from
utilizing the temporal correlation between the facial and camera
motion signals and investigating the impact of the correlation infor-
mation. Intuitively, systems that inspect such temporal correlation
information require spoofing attackers to further achieve synchro-
nization between the physical and virtual sensors’ data streams and
thus provide additional protection. We envision real-world prod-
ucts building upon the virtual sensors authentication concept to uti-
lize deep-learning approaches for processing temporally-correlated
physical and virtual sensors’ information.

5 DISCUSSION
Below we discuss the major areas of possible future work and
interesting research questions.

Sensor Side Channel Models. To support future applications
of sensor side channels, we believe more concrete and computable
mathematical models than the framework proposed in Section 3
are needed as the current framework relies on abstract concepts
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Physical IMU Virtual ITE Virtual RSE
TPR TNR TPR TNR TPR TNR

Stab. OFF 95.8% 94.4% 62.5% 65.3% 91.7% 87.5%
Stab. ON 95.8% 93.1% 45.8% 41.7% 70.8% 72.2%

Table 1: Test Accuracy of Tremor Recognition

TPR (true positive rate) and TNR (true negative rate) are the percentages of
correctly recognizing a legitimate user and a perfect silicone mask spoofing
attack respectively. In comparison, MobileFaceNets had TPR=100% and
TNR=0% in our test.

instead of rigorous mathematical derivations. We envision future
models to have the following features. First, they need to enable
exact definitions and determination of different types of sensor
side channels by providing the algorithms for calculating signal
correlations and threshold values. Second, they need to provide
quantitative metrics for measuring the usability-security trade-off
mentioned in Section 4.3.3. Third, they need to delineate mecha-
nisms for measuring the available signal quality and bandwidth of
side channel measurement components.

Security for Sensor Side Channel Authentication. Techni-
cally, inseparable sensor side channels also provide the informa-
tion needed for measurand authentication. We advocate the use of
separable and controllable sensor side channels because they are
protected from adversaries that exploit unmitigated side channels
(Section 2.1). Nevertheless, risks of malicious exploitation still exist
within authentication time. It is thus necessary for future works
to consider how to ensure that side channels benefit the defender,
but not adversaries that attempt eavesdropping and transduction
attacks, during authentication.

We believe an access control and permission system that is simi-
lar to existing systems managing physical sensors on mobile plat-
forms (e.g., Android) can be employed to prevent eavesdropping
attacks. Virtual sensor entries can potentially be created and in-
tegrated into existing permission systems so that knowledge and
methodology of solving physical sensors’ problems can also benefit
virtual sensors. Transduction attacks, on the other hand, are harder
to address. In the context of sensor side channel based measurand
authentication, transduction attacks can be generalized as authen-
tication spoofing that tries to modify perceived characteristics of
the byproducts, measurers, and environments. As a result, existing
methodologies of spoofing detection may be applied. In summary,
we believe there are opportunities to address the problems of virtual
sensors by reflecting on existing methodology for physical sensors.

Side Channels vs. Legitimate Channels.We believe there will
be an interesting phenomenon that sensor side channels are turned
into legitimate communication channels when active controls and
dedicated APIs are developed to support as well as regulate the
use of sensor side channels in the future. After all, the key differ-
ence between side channels and legitimate channels is whether
the channels are designed, intended, and allowed by the system’s
security policy or not. When such side channels are regarded as
legitimate channels, however, new side-channel information may
again be discovered to be embedded in such “legitimate” informa-
tion as hardware and computation technologies keep advancing
and extending the boundary of recoverable physical signals. We

thus believe it is necessary for researchers to take a development
perspective and periodically examine the security implications of
sensor side channels.

Fewer Sensors via Sensor Repurposing. In a broader context,
we believe the technique of synthesizing virtual sensors from sensor
side channels aligns with the general idea of repurposing sensors
for different sensing tasks. Essentially, we are trying to shift sensor
hardware functionalities to the software space by understanding the
transformation between different forms of signal energy and car-
rying out additional model-based computations. In contrast to the
current trend of deploying more and more sensors in the Internet
of Things era, we cannot help thinking if such sensor repurposing
ideas would allow us to reduce the number of physical sensors and
achieve more abstract and manageable sensor peripheral systems
that are subjected to smaller attack surfaces.

Besides reducing the number of physical sensors, the technique
could also be applied to enhance existing systems that require new
functionalities but have harsh environmental conditions where a
hardware update is challenging. This idea is revealed in the example
of NASA’s Voyager 1 spacecraft which needed to measure plasma
density in order to determine its location relative to the heliosphere.
Voyager 1’s plasma spectrometer stopped working in 1980, making
a direct plasma density measurement impossible. However, the op-
eration team learned that our sun sometimes emits shock waves
that can cause the plasma surrounding the spacecraft to oscillate.
The team then measured the oscillation using Voyager 1’s onboard
plasma wave sensing system as a proxy of the plasma density [18],
essentially synthesizing a virtual plasma density sensor by under-
standing the energy transformations.

6 CONCLUSION
This paper argued that analog sensor side channels can benefit
defenders by providing an opportunity to authenticate the sensor
measurands. Future sensor designs can consider actively controlling
sensor side channels after finding ways to mitigate these channels,
instead of simply eliminating sensor side channels. We first in-
troduced a framework for defining and characterizing sensor side
channels, and then formulated the problem of measurand authenti-
cation using virtual sensors synthesized from sensor side channels.
We also introduced three specific ways of applying the model of
measurand authentication by verifying signal byproducts, sensor
measurers, and sensor environments respectively, and provided
examples of each case.

Synthesizing virtual sensors from the side channels of physical
sensors formulates a mechanism for repurposing existing sensor
hardware to harvest extra modalities of information. We believe
the applications of this mechanism can potentially span a much
larger scope than authentication. Going forward, we envision that
virtual sensor synthesis could develop into a new research area
that actively interacts with the existing research areas of digital
forensics, sensor fusion, multimodal deep learning and perception,
etc. The fundamental research question we will need to explore is
how to model the transformations between the energies of different
information modalities.
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